
MEASURING THE SIMILARITY OF TWO IMAGE SEQUENCES

Ying Shan, Harpreet S. Sawhney, Art Pope

Computer Vision Laboratory
Sarnoff Corporation

201 Washington Road, Princeton, NJ 08540, USA

ABSTRACT

We propose a novel similarity measure of two image
sequences based on shapeme histograms. The idea of
shapeme histogram has been used for single image/texture
recognition, but is used here to solve the sequence-to-
sequence matching problem. We develop techniques to
represent each sequence as a set of shapeme histograms,
which captures different variations of the object appear-
ances within the sequence. These shapeme histograms are
computed from the set of 2D invariant features that are sta-
ble across multiple images in the sequence, and therefore
minimizes the effect of both background clutter, and 2D
pose variations. We define sequence similarity measure as
the similarity of the most similar pair of images from both
sequences. This definition maximizes the chance of match-
ing between two sequences of the same object, because it
requires only part of the sequences being similar. We also
introduce a weighting scheme to conduct an implicit fea-
ture selection process during the matching of two shapeme
histograms. Experiments on clustering image sequences of
tracked objects demonstrate the efficacy of the proposed
method.

1. INTRODUCTION

The problem of matching two image sequences arises from
the visual interpretation applications where a collection of
images of each object is available. As compared with a sin-
gle image, a sequence captures more appearance variability
of the object, and is therefore more robust for the matching
purpose. On the other hand, most low-level processes such
as feature detection are not stable enough when operated on
a single image. Having a sequence improves the chance of
detecting stable features that are common to the images of
the same object.

Figure 1 illustrates a typical example of our targeting
problem set. The similarity of two sequences can be nat-
urally defined as the similarity of the most similar pair of
images from both sequences. In this case, �� (see Fig.1
for numbering details) and �� can be used to compute the

Fig. 1. Matching sequence � (above) against � (below). Images
in each sequence can have different object appearances, 2D poses,
and a fair amount of background clutter. The number and sizes
of images in the sequences can be different, and the order of the
images is of no importance. From left to right , the images are
numbered from 1 to 9, and therefore �� represent the top left im-
age from sequence A, and �� represents the bottom right image
from sequence B.

similarity since they look the most similar. In reality, sev-
eral issues need to be resolved before the similarity measure
can actually be computed. First, each sequence may contain
over hundreds of images, and hence exhaustively comput-
ing pairwise similarities is infeasible. Second, the effect of
pose variations of the object need to be removed before the
pairwise similarity measure is computed. Third, the back-
ground pixels such as in �� to �� need to be excluded from
the computation of the pairwise similarities. Other difficul-
ties such as illumination changes can also occur, but are not
the concern of this paper.

To address these issues, our proposed method computes
a feature vector for each image in the sequence. Cluster-
ing in the feature vector space generates a set of prototype
feature vectors, which forms the representation of the se-
quence. The similarity between two sequences is then com-
puted from their corresponding two sets of prototype fea-
ture vectors. Since the number of prototype feature vectors
is usually much less than the original number of images in
the sequence, the computational cost is largely reduced.

Our feature vector is essentially a histogram of low-level
features that are affine invariant. Consequently, each proto-
type feature vector encodes information of a group of im-
ages that are similar up to an affine transformation. The
appearance changes between different groups of images
caused by, say, self-occlusion, can not be canceled by a sim-
ple 2D transformation. This is why we use multiple proto-

type feature vectors to represent a sequence. For example,
we may need two prototype feature vectors to represent the
group of images ���� ��� ���, and ���� ���, respectively.

The set of all low-level features from the whole sequence
is also clustered, and only those forming strong clusters in
the feature space are selected and used in the binning of
the histogram (the feature vector). This process intends to
keep the foreground features and remove the background
features, because the former is usually stable over the se-
quence, while the latter is not.

2. RELATED WORK

The idea of matching faces with two image sequences in-
stead of two single images was presented in [1], where
each sequence is represented as a set of straightened im-
age vectors. The dissimilarity is then defined as the princi-
ple angle between the subspaces spanned by these two sets
of vectors. While promising when applied to normalized
face sequences, the underlying linear subspace assumption
is somewhat restrictive. Obviously, images from sequence
� or � in Fig.1 do not span a linear subspace even the 2D
pose variations are canceled in advance. The Kernal Prin-
cipal Angle [2] approach also uses the same dissimilarity
measure, but maps the image vectors into a higher dimen-
sional space before the principal angle is computed. The
idea there is that a non-linear manifold in the image vector
space can be represented as a linear subspace in the mapped
higher dimensional space. This may be possible when the
image vectors lay on a relatively low dimensional manifold
induced by 3D pose variations, and limited global illumi-
nation changes. However, it will be interesting to see the
performance when a fair amount of background pixels are
included.

Another related approach is the part-based model repre-
sentation and recognition approach[3], where scale invari-
ant features are detected in the first place as the low-level
features. Following [4], a probabilistic model with fixed
number of parts is learnt from a set of images of a common
object class, say, motorbike. Recognition is performed by
assigning parts to different features and pick the hypothesis
that gives the highest posterior. The recognition process has
���� � complexity, where � is the number of feature in a
single image, and � is the number of parts. This approach
is therefore not appropriate for matching two sequences be-
cause the complexity will increase to ��� � � � �, where
� is the number of the images in the query sequence (the
one that is not used to learn the model). Moreover, for
the sequences given in Fig.1, multiple models are needed
since one model can not explain all the appearance changes.
This will further complicate the model estimation process.
Instead of using a part-based probabilistic model, our ap-
proach essentially uses a set of averaged part histograms

to describe the whole sequence. This representation cap-
tures more variability of the sequence, and is computation-
ally more efficient.

Our basic representation is based on the idea of shapeme
and shapeme histogram,proposed by Mori, Belongie and
Malik [5] for 2D object recognition. A shapeme is a pro-
totype shape feature that represents a cluster of similar in-
variant features called “2D shape contexts”. Shape con-
text features are computed based on basis points that are
densely sampled on the 2D object, and hence a single ob-
ject may contain many shape context features. Each feature
on an object is assigned to its closest shapeme. Counting
the frequency of shapemes over the whole object gives the
shapeme histogram for the object. Fig. 2 shows an exam-
ple. Twenty basis points are selected from a star-shaped
object in Fig. 2(a). 2D shape features are computed and la-
beled by 3 shapemes as in Fig. 2(b). The shapeme labels
are given in Fig. 2(c). Since there are 5 #1, 5 #2, and 10 #3
labels on the object, the shapeme histogram of this object is
� � ��� �� ���. Shapeme histogram is used by [6] and [7]
for texture representation. In this paper, we use shapeme
histogram in a different context, i.e., to represent a image
sequence of an object.

Shapeme label = 1

Shapeme label = 2

Shapeme label = 3

Label 1 # Label 2 # Label 3

5 5 10

(a) (b)

(c) (d)

h = [5, 5, 10]

Fig. 2. Shapeme histogram. (a) The original 2D object, and the
basis points (the circles) where 2D invariant features are computed.
(b) The same object with each feature point labeled with a set of
3 shapemes labeled as in (c). (d) The shapeme histogram of the
object in both table and vector formats.

3. OUR APPROACH

Given a sequence � that contains �� images, we com-
pute one shapeme histogram �� for each image. Cluster-
ing the set of shapeme histograms �� � ���

�
� � � � ������

generates a set of prototype shapeme histograms �� �
������

�
�� � � � ��

�
��
�, where 	� is the number of prototype

shapeme histograms selected from �
�. Each ��� encodes

invariant appearance information of a group of images in
the sequence that are similar up to an affine transformation.

Figure 3 shows the representative images for such groups
from a sequence of 306 images. Because 	� is usually much
smaller than ��, the set �� forms a compact representation
of the sequence. The similarity of sequence
 and sequence
�, represented as �� and �� , respectively, is then defined
as:

�������� � 	
�
�������������	�����������

����� ��
�
	 � (1)

where ���� �� is the similarity between a pair of shapeme
histograms.

3.1. Compute Prototype Shapeme Histograms

3.1.1. Local Process

Figure 4 shows how to compute�� from a sequence �. The
item number in the following discussion corresponds to the
number in the figure. 1. For each image in the sequence,
a set of low-level features is extracted. 2. K-Means clus-
tering is then applied to find clusters in the feature space.
Foreground features tend to have consistent appearance over
multiple images in the sequence, and can therefore form
strong clusters (dotted circles) in the feature space. 3. These
strong clusters are kept, while the weak clusters (the cyan
points in Fig. 4) corresponding to unstable background fea-
tures are removed. In our current implementation, clusters
whose number of features are larger than a threshold are
regarded as strong clusters. 4. The centers of the remain-
ing clusters are then used to generate the codebook, where
each center is given a label. These centers are essentially
the shapemes as described in Fig.2. 5 & 6. The features
in each image are then labeled according to the codebook,
and by binning the labeled features as in Fig.2, a shapeme
histogram �

�
� can be constructed for each image. 7. Clus-

tering for all the shapeme histograms of the sequence gen-
erates the set of prototype shapeme histograms ��. In the
last step, images whose shapeme histograms are the clos-
est to the prototype shapeme histograms are selected as the
representative images. It should be noted that the represen-
tative images are the byproduct of this process. They are
useful for the visualization purpose, but are not involved in
the similarity computation.

While our shapeme histogram generation process seems
similar to [5, 6, 7], it is important to note that our shapemes
are computed from the features that are stable across multi-
ple images. This is different from the single image/texture
recognition applications, where shapemes are computed
from the features that are spatially stable over a single im-
age.

3.1.2. Global Process

The above process generates shapeme histogram based on a
codebook that is local to each sequence. In order to compute

similarity between different sequences, the actual shapeme
histograms are computed from a unified global codebook.
In our implementation, the global codebook is obtained by
clustering all the stable features from all the sequences un-
der consideration. The stable features are identified as the
features belonging to the strong clusters that have been used
to generate the local codebook.

Shapeme Label #

1

2

31 1 1 1 1 10 1 1

Feature extraction

Feature clustering Keep stable features

Generate codebookLabel stable features

Shapeme histogram for each view

1 1 1

0 1 1

Histogram clustering
Corresponding representative images

1 1 1

1

2

3

4

5

6

7

Fig. 4. Compute feature vectors and representative images.

3.2. Similarity of a Pair of Shapeme Histograms

Given a global codebook of � shapemes, the similarity be-
tween two shapeme histograms ��

� � ������� � � � � �
�
��
� and

��
� � ���	��� � � � � �

�
	�
� is defined as:

����� ��
�
	 � �

�
���

��
��� � �

�
	�� (2)

where ������
��� is defined as:

�
�����
��� �

�
�����
��� �� ��������

�����
�����
��� �������������

(3)

In (3), � is the total number of sequences under consider-
ation, and �� is the number of sequences that contain the
�th shapeme in the codebook. This formula is known as
�� � ��� weight [8] in the document analysis community,
where �� corresponds to ���� called the term frequency, and
��� corresponds to �� ������ called inverse document fre-
quency. A probabilistic justification can be found in [9]. It
can be seen from both (2) and (3) that a high �� term can
contribute to the decision that two histograms are similar.
However, if the corresponding shapeme has low ��� term,
the contribution will be down weighted. This is essentially
a feature selection process, where shapemes that belong to
many sequences are regarded as less important. In addition

Fig. 3. Left: A sequence of ��� images. Right: Representative images of the sequence. Each image represents a group of images that are
similar up to an affine transformation.

to �� and ��� terms, the normalization term in (3) ensures
that the similarity is not biased by the absolute number of
features contained in each sequence. In other words, only
the relative frequency of each shapeme is important in the
comparison of two shapeme histograms.

3.3. Feature Extraction

The framework of our match measure computation does not
depend on any particular type of low-level feature. Tradi-
tionally, such features are computed in the neighborhood
of a point feature, and the size of the neighborhood is de-
termined by a characteristic scale found by a scale space
method[10, 11]. In our case, because the images are usu-
ally very small, e.g., less than �� � �� pixels, we find the
intensity profile feature described in Fig. 5 gives better per-
formance. A similar feature has been used in the context
of image matching by Tell and Carlsson in [12], but is not
invariant to the order of the two end points.

4. EXPERIMENTS

We have built on PC a prototype system that computes the
proposed similarity measure for pairs of image sequences,
and applied it for sequence clustering to demonstrate its ef-
ficacy. Sequences used in the experiments are prepared by
cropping object images from their corresponding ROIs in
the original videos. These ROIs are provided by a layer
tracker for each tracked object. No other preprocessing such
as alignment and background clutter removal are applied to
the cropped images. Fig.6 shows some images of a vehi-
cle generated in this way. It can be seen from Fig.6 that
the images contain a fair amount of background clutter, sig-

(c)
0 5 10 15 20 25 30

40

60

80

100

120

140

160

180

200

220

240

(b)

(a)

l1 l2

l3

Fig. 5. Affine invariant profile feature computed from a pair of
point features. Curve �� (dashed in red) in (b) corresponds to the
intensity profile (left to right) along the curve that connects two
point features in (a). Curve �� (dotted in green) in (b) is the re-
flection of the original intensity profile. Curve �� (solid in blue)
is the average of the previous two curves. The solid curve in (c)
corresponds to the left half of the averaged curve in (b). We use 10
samples from this curve to form a 10 dimensional feature vector,
which is invariant to affine transformation, as well as the order of
the two end points.

nificant appearance changes, and 2D pose variations. The
experiments are conducted as the following.

1. For all the � sequences under concern, find all the
point features for each image in the sequence, and
compute profile feature as described in Sec. 3.3.

2. Compute the set of shapeme histograms �� for each
sequence � as described in Sec. 3.1. Note here that the
codebook is global to all the sequences.

3. Compute similarity measures between pairs of se-
quences as describe in Sec. 3.2.

Fig. 6. Fifty vehicle images from a sequence of 120 images.

4. Convert similarity measure into dissimilarity measure,
and form a � � � dissimilarity matrix for all the N
sequences. Since our similarity measure � � ��� ��,
we simply use � � � to convert it into a dissimilarity
measure.

5. Visualize the dissimilarity matrix with dendrogram.

There are four parameters to adjust, i.e., the number 	 of
the shapeme histograms for each sequence, the number � of
the clusters used to generate the stable features as in Fig. 4,
the number � of the clusters used to generate the global
codebook as described in Sec. 3.1, and the threshold for
defining the strong clusters as described in Sec. 3.1. After
some experiments, the fixed set of parameters, i.e., 	 � �,
� � ���, � � ���, � ��, is used for all the experiments
presented here. The number of point features used to gener-
ate the profile features is limited to 30 per image.

 1 3 4 5 2 6 9 8 7 10
0

0.2

0.4

0.6

Fig. 7. Clustering result for �� sequences of 2 vehicle objects.

The first experiments uses 10 sequences of 2 vehicle ob-
jects, five sequences for each object, and about 120 im-
ages for each sequence. These sequences are taken from

a moving aerial camera looking at moving objects on the
ground. Figure 7 shows the result visualized by a dendro-
gram, which is plotted by a modified Matlab function called
“dendrogram”. Dendrogram is a tree structure, of which
each leaf node represents a sequence in our case. For each
sequence, we use 	 � � representative images displayed in
a column in the dendrogram. These representative images
are generated as described in Sec. 3.1 and Fig. 4. The verti-
cal axis on the top part of the dendrogram shows the dissim-
ilarity values. The smaller this number, the more similar the
two sequences are. Similarly, the further (in terms of tree
levels) a tree node is from the root, the more the groups of
sequences (under this node) are similar.

It can be seen from Fig. 7 that 10 sequences of the
two objects are clearly separated into two corresponding
groups, one for the sequences of ��� �� �� �� �� (the se-
quence numbers are on the horizontal axis), and the other
for ��� �� �� �� ���. The dissimilarity between these two
groups are very high (above 0.6), while the dissimilarities
within each group are much smaller (below 0.25). The 5
representative images from the �th sequence in Fig. 7 are
selected automatically from the sequence shown in Fig. 6.
It can be seen that the system indeed captures the major ap-
pearance changes in the sequence. The foreground objects
in some other sequences such as sequences ��� �� �� do not
have much appearance variances, and hence their represen-
tative images look all the same. The running time is about
11 minutes on a 850Hz PC. Our second experiment uses
12 sequences of 5 vehicle objects, with 3 of them having
similar shape and color. These sequences are taken from a
static camera looking from the side of a circular drive way.
Each vehicle is driven in front of the camera at least twice
in alternative directions. The result is given in Fig. 8. Ac-
cording to the truth that ��� ��, ��� ��, ��� ��� ��, ��� ���,
and ��� �� ��� belong to the same object, the only confusion
is caused by the 9th sequence, which is quite different from
��� ��� due to the out-of-plane rotation of the vehicle. How-
ever, it should be noted that the �th sequence is still closer to
��� ��� than ��� ���, and ��� �� ���. Also note that the scale
change between ��� and ���� is properly handled. The re-
flection invariance seen as in ��� �� and ��� �� is due to the
fact that our profile feature is invariant to the order of the
end points. The running time is about 15 minutes for this
experiment.

5. CONCLUSION AND FUTURE WORK

We introduce a novel idea of using shapeme histogram to
solve the sequence-to-sequence matching problem, which
is challenging in the presence of large appearance and pose
variations, and background clutter. We propose to rep-
resent each sequence as a set of prototype shapeme his-
tograms, each of which encodes information of a group of

 4 7 2 8 3 11 9 5 12 1 6 10
0

0.1

0.2

0.3

0.4

0.5

Fig. 8. Clustering result for 15 sequences of 6 vehicle objects.

images with similar appearance. This representation cap-
tures the major appearance changes in the sequence while
still keeps the matching computation tractable. We develop
techniques to compute shapeme histograms from the set of
affine-invariant features that are stable across multiple im-
ages in the sequence, and therefore reduce the difficulty
caused by both background clutter and affine pose varia-
tions. We also borrow the �� � ��� weighting scheme to
conduct an implicit feature selection process when match-
ing two shapeme histograms. Experiments on clustering im-
age sequences of tracked objects confirms the efficacy of the
proposed method.

The current approach uses intensity profile feature, which
is not invariant to illumination changes, and is computation-
ally expensive. In the future we will look for new features
that can be easily extracted from small images, and are in-
variant to both pose and illumination changes. Instead of
having a fixed number of prototype shapeme histograms for
all the sequences, it will be also interesting to find an opti-
mal number for each sequence.

6. REFERENCES

[1] Yamaguchi O., Fukui K., and Maeda K., “Face recognition
using temporal image sequence,” in International Confer-
ence on Automatic Face and Gesture Recognition, 1998, pp.
318–323.

[2] Lior Wolf and Amnon Shashua, “Kernel principal angles for
classification machines with applications to image sequence
interpretation,” in Proceedings IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR03), 2003.

[3] R. Fergus, P. Perona, and A. Zisserman1, “Object class

recognition by unsupervised scale-invariant learning,” in
Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR03), 2003.

[4] M. Weber, M. Welling, and P. Perona, “Unsupervised learn-
ing of models for recognition,” in European Conference on
Computer Vision (ECCV00), 2000, pp. 18–32.

[5] G. Mori, S. Belongie, and J. Malik., “Shape contexts en-
able efficient retrieval of similar shapes,” in Proceedings
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR01), 2001, pp. 723–730.

[6] Thomas Leung and Jitendra Malik, “Representing and rec-
ognizing the visual appearance of materials using three-
dimensional textons,” International Journal of Computer Vi-
sion (IJCV01), vol. 43, no. 1, pp. 29–44, 2001.

[7] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce, “A
sparse texture representation using affine-invariant regions,”
in Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR03), 2003.

[8] Gerard Salton, “Developments in automatic text retrieval,”
Science, vol. 253, no. 5023, pp. 974–980, 1991.

[9] Djoerd Hiemstra, “A probabilistic justification for using tf
� idf term weighting in information retrieval,” International
Journal of Digital Library, vol. 3, pp. 131–139, 2000.

[10] K.Mikolajczyk and C.Schmid, “An affine invariant interest
point detector,” in European Conference on Computer Vision
(ECCV02), 2002, vol. 4, pp. 700–714.

[11] David G. Lowe, “Object recognition from local scale-
invariant features,” in International Conference on Computer
Vision(ICCV99), 1999, pp. 1150–1157.

[12] Dennis Tell and Stefan Carlsson, “Combining topology and
appearance for wide baseline matching,” in European Con-
ference on Computer Vision (ECCV02), 2002, pp. 68–81.

